Simultaneous feature selection and classification via Minimax Probability Machine

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous feature selection and classification via Minimax Probability Machine

This paper presents a novel method for simultaneous feature selection and classification by incorporating a robust L1-norm into the objective function of Minimax Probability Machine (MPM). A fractional programming framework is derived by using a bound on the misclassification error involving the mean and covariance of the data. Furthermore, the problems are solved by the Quadratic Interpolation...

متن کامل

Sparse Greedy Minimax Probability Machine Classification

The Minimax Probability Machine Classification (MPMC) framework [Lanckriet et al., 2002] builds classifiers by minimizing the maximum probability of misclassification, and gives direct estimates of the probabilistic accuracy bound Ω. The only assumptions that MPMC makes is that good estimates of means and covariance matrixes of the classes exist. However, as with Support Vector Machines, MPMC i...

متن کامل

Robust Minimax Probability Machine Regression Robust Minimax Probability Machine Regression

We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...

متن کامل

Transductive Minimax Probability Machine

The Minimax Probability Machine (MPM) is an elegant machine learning algorithm for inductive learning. It learns a classifier that minimizes an upper bound on its own generalization error. In this paper, we extend its celebrated inductive formulation to an equally elegant transductive learning algorithm. In the transductive setting, the label assignment of a test set is already optimized during...

متن کامل

Minimax Probability Machine

When constructing a classifier, the probability of correct classification of future data points should be maximized. In the current paper this desideratum is translated in a very direct way into an optimization problem, which is solved using methods from convex optimization. We also show how to exploit Mercer kernels in this setting to obtain nonlinear decision boundaries. A worst-case bound on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2010

ISSN: 1875-6883

DOI: 10.2991/ijcis.2010.3.6.6